
 

 

 

    Abstract - A new family of algorithms searching 

globally optimal solutions to discrete programming 

problems is proposed. It is proved that the effectiveness of 

this method depends only on the number of variables of 

the problem being solved. The main difference from the 

methods of implicit enumeration is in the ability to a priori 

predict, solving by the one of proposed methods any 

extreme problem with Boolean variables, the number of 

iterations, the running time, and the amount of RAM used. 

The results of experimental verification of the effectiveness 

of various versions of modular enumeration procedures 

and, on their basis, recommendations for the use of these 

algorithms are given. 
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I. INTRODUCTION 

The interest in discrete optimization problems can be 

explained by a large number of reducible applications. To 

obtain globally optimal solutions of these problems, as a rule, 

are used either brute force methods or implicit enumeration 

methods developed in the middle of the last century, such as 

dynamic programming, branch-and-bound (B&B) methods, 

backtracking [1]-[4] and their modifications [5]-[9]. Keeping 

in mind all the positive features of all these methods, 

nevertheless, it should be recognized that all these methods 

have several negative features: 

 the impossibility to predict a priori neither the 

running time nor the gain in running time from the 

use of these procedures as compared to the brute 

force methods;   

 operating in a hostile environment, i. e. in the case 

when B&B method, as well as backtracking, makes 

many mistakes when choosing the direction of the 

search in the branch tree, there may be cases when the 

 
 

number of iterations by these methods exceeds the 

number of different complete plans, thus running 

time of implicit enumeration methods is exceeding 

the brute force method running time;  

 using dynamic programming the number of 

analyzed plans can exceed the number of different 

complete plans, when, during search, it is possible to 

cut off only a relatively few unpromising groups of 

vectors of variables.  

At the same time, the brute force method makes it possible to 

predict a priori the running time for globally optimal solutions 

search to specific problems. That is why, the idea of applying 

and improving the method of complete enumeration of all 

combinations of values of variables in relation to discrete 

optimization problems remains relevant. This approach is also 

so attractive because it allows you to a priori predict the 

number of iterations and the running time. The main idea of 

the proposed below two algorithms is in the modular 

organization of complete enumeration permitting to shorten its 

running time thus increasing its performance due to the more 

intensive use of the computer's RAM.  Thus, within the 

framework of the proposed approach, we pay with RAM for an 

increase in the computational speed. 

    This paper contains description, analysis and experimental 

verification of efficiency of the two new realizations of the 

brute force method including its modular organization related 

to searching a globally optimal solution to extreme problems 

with discrete variables. Examples and statistics below are 

based on knapsack problems solving [10]. 

II. BASIC PRINCIPLES OF MODULAR ENUMERATION 

   

The essence of the proposed approach is to implement three 

stages of finding globally optimal solutions to discrete 

programming problems. At the first stage, all the variables are 

grouped into “m” modules and, for each module all 

combinations of the values of the variables corresponding to 

this module are generated and stored in the RAM. At the 

second stage, for each combination of variables of each 
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module, its part of the objective function and constraints are 

calculated and stored. The third stage includes two steps: 

a) usage of the contents of the modules for generation of all 

complete plans, the corresponding values of the objective 

function and constraints;  

b) their comparison and selection of the best values of the 

vector of variables.  

It is easy to show that in the case of m modules, regardless of 

the number of variables of a knapsack problem being solved, 

only (m-1) operations of addition and two comparison 

operations at each iteration are performed.  

This raises two questions: 

1) What should be the strategy of variables distribution 

between modules? 

2) What is the optimal number of modules for a specific task? 

The answers are contained in the two theorems below: 

Theorem 1. The optimal strategy corresponds to such a 

distribution of variables over modules that the numbers of 

different vectors of variables for any pair of modules coincide.  

The proof of Theorem 1 is given in Appendix. 

The multiplicity constraint for “n” and “m” is not strong due to 

the following theorem: 

Theorem 2. The optimal number of modules “m” for problems 

with Boolean variables does not depend on the number of 

variables and constraints of problem to be solved and is equal 

to 2:  mopt = 2.                                                                      (1)                                                             

The proof of Theorem 2 is given in Appendix. 

These two theorems allow us the following step by step 

description of two Algorithms, guaranteeing minimal running  

time for problems with Boolean variables of the form [7]–[ 9]: 

 
where Z = {z1, z2, ..., zn} is a vector of Boolean variables, 

whereas Ɐi,j: Сi, bij, and aj are integer constants. 

III. MODULAR ENUMERATION ALGORITHMS 

   The main feature of Algorithm 1 presented below is such an 

organization of the full enumeration process, in which: 

a) the conditions of Theorems 1 and 2 are satisfied; 

b) the number of arithmetic operations is minimal. 

Algorithm 1 

Step 1. If problem (2) goal function F is maximized, then R= -

∞, otherwise R=+∞. 

Step 2. The entire set of variables Z is divided into m = 2 

modules, the number of variables of the first module is equal 

to the integer part of the ratio | Z | / 2, subsets of variables in 

which do not intersect, in other words, for subsets of variables 

belonging to different modules, the following conditions are 

true: 

                                                j = Z;                           (3)         

                                                 Z1∩Z2=ø;                               (4) 

                                                | Z2| -|Z1|≤1,                             (5)   
where Zj is the subset of variables, corresponding to the j-th 

module (j = 1, 2).  

Step 3. i=1. 

Step 4. If i = 1, then q is equal to the integer part of the ratio    

|Z| / 2, otherwise q = |Z| -|Z1|. 
 

Step 5. All the 2q different states of the variables of the i-th 

module, as well as the components of the objective function 

and of constraints of problem (2) corresponding to each such 

state, are generated, and fixed in the RAM. 

Step 6. i=i+1. 

Step 7. If i >2 then go to the step 8, otherwise go to the step 4. 

Step 8. A new vector of variables is generated by new 

combination of in-RAM components of variables belonging to 

different modules. If there is no such a combination, then go to 

step 12. 

Step 9. The new value of F is obtained by substituting the 

vector of variables obtained at the previous step into system 

(2). 

Step 10. If R is "better" than F, then go to step 6, otherwise, go 

to step 11. 

Step 11. R:=F, the new vector of variables obtained at the 8-th 

step of the last iteration is stored, go to step 6. 

Step 12. The algorithm is over. The values of R and of the 

vector of variables stored in memory at the last call of the 11-

th step are problem (2) optimal solution. The number of 

analyzed vectors of variables is equal to (i - 2). 

 

Example 1. Using the above Algorithm 1, solve the knapsack 

problem of the form: 

                   7z1 + 2z2 + 4z3 + 5z4 →max; 

                           2z1 + 4z2 + 8z3 + 3z4 ≤12;                          (6) 

                           ꓯi: zi =1,0. 

Determine the effectiveness of the proposed approach in 

relation to problem (6), provided that m = 2. 

1) R = - ∞. 

2) Distribution of variables into two modules 

satisfying system (3) - (5): Z1 = {z1;z2}; Z2 = {z3;z4}. 
3) Generation of all states of the vectors of variables 

of each module and calculation of the corresponding 

components of the objective function ∆Fi and of the 

left side of the constraint of the system (6) ∆bi are 

presented in the Table 1 bellow:  

 Table 1 

m1 m2 

z1 z2 ∆F1 ∆b1 z3 z4 ∆F2 ∆b2 

0 0 0 0 0 0 0 0 

0 1 2 4 0 1 5 3 

1 0 7 2 1 0 4 8 

1 1 9 6 1 1 9 11 

4)   Analysis of all the pairwise combinations of vectors 

of variables of both modules (repeating 16 times steps 

8-11 of Algorithm 1) allows us to obtain a globally 

optimal problem (6) solution: R = Fmax = 14, Zopt = 

{1,1,0,1}. 

5)   The effectiveness of the proposed approach in 

relation to problem (6) is determined by the gain in 

Components of modules m1 and m2 
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running time of Algorithm 1 in comparison with the 

traditional realization of enumeration method solving 

the same problem. In the latter case, it can be shown 

that the running time of the search for a knapsack 

problem globally optimal solution is determined by 

the expression:    

                                T1=2∙(n-1)∙2n∙t0,                       (7)  

where t0 is equal to the sum of the times of addition 

and multiplication of two integer numbers, whereas 

time of two numbers comparison is ignored. A similar 

approach to estimating the search time for the same 

problem solution by modular enumeration allows us 

to determine this time as follows:  

                    T2 = t0∙[n∙20.5n + 2n+1].                         (8) 

The gain in running time resulting algorithm 1 usage 

when solving problem (6) is equal to η: 

                        η = T1/T2 ≈ 1.33(3).                        (9)     

  

  The gain in computation time from the use of Algorithm 1 as 

compared to exhaustive search is determined by the ratio of 

the right-hand sides (7) and (8):                                             
                                                           

                η = T1/ T2 = (n-1)∙2n+1/[n∙20.5n + 2n+1].                  (10)      

Since with growth of n the fraction of the first term in the 

denominator of the right-hand side of (10) in the sum of both 

terms decreases, the following equality is true:                                                                                            

                                         .                           (11) 

The experimental results presented below in Section 4 confirm 

the assessment of the efficiency of Algorithm 1 given in (11). 

It can be also shown that the amount of RAM used by 

Algorithm, solving problem (2) with n variables, is 

proportional to the value V = n∙20.5n.                                  (12) 

   Unlike Algorithm 1, Algorithm 2 is organized in such a way 

that not only the number of arithmetic operations at each 

iteration, but also the number of iterations is minimized during 

the enumeration process. This is achieved by changing the 

order of generation of the vectors of variables at step 8: during 

each iteration at this step is generated a new vector of 

variables, consisting of two parts corresponding to the best 

values of goal function components in each module. This 

strategy avoids the analysis of vectors of variables, which 

correspond to a priori "bad" values of the objective function, 

thus, giving the opportunity to get a gain in time exceeding 

that which is determined by (11).  
 Since the first seven steps of Algorithms 1 and 2 are the same, 

the description of Algorithm 2 below begins with the eighth 

step. 
Algorithm 2 

Step 8. All vectors of variables of the first module are 

considered as unlabeled. 

Step 9. Among the unlabeled vectors of variables of the first 

module, the one that corresponds to the best value of the 

components of objective function belonging to this module, is 

selected. If all vectors of variables belonging to this module 

are labeled, then go to step 17. 

Step 10. All vectors of variables of the second module are 

considered as unlabeled. 

Step 11. Among the unlabeled vectors of variables of the 

second module, the one that corresponds to the best value of 

the components of objective function belonging to this 

module, is selected. If all vectors of variables belonging to this 

module are already labeled, then transition to step 9. 

 

Step 12. Generation of a new vector of variables, the values of 

which were sequentially obtained at steps 9 and 11 of the last 

iteration. 
Step 13. The vectors of the variables selected in steps 9 and 

11 of the last iteration are labeled. 

Step 14. If the value of the objective function, calculated with 

the values of the variables determined at step 12 of the last 

iteration, is "not better" than the previously found and stored 

in RAM value, then go to step 9, otherwise go to step 15. 

Step 15. If the vector of variables created at step 12 of the last 

iteration satisfies all the conditions of problem (2), then go to 

step 16, otherwise, go to step 11. 

Step 16. Replacing the value of the objective function stored in 

RAM with a new one corresponding to the vector of variables 

generated at step 12 of the last iteration and transition to step 

9. 

Step 17. The algorithm is over. The best value of the objective 

function is stored in RAM. 
 

It is easy to verify that, due to steps 9 and 11, the duration of 

each iteration of Algorithm 2 exceeds the similar parameter of 

Algorithm 1, however, thanks to steps 14 - 16, there are 

chances that the number of these iterations will decrease, and 

these chances increase with the number of variables. The 

effectiveness of the above algorithm 2 is demonstrated below 

in two ways: 

 a) as applied to the solution of problem (6);  

 b) statistical research presented in the next section. 

 

Example 2. Using the above Algorithm 2, solve the knapsack 

problem (6). 

The first three steps of solving problem (6) by algorithms 1 

and 2 coincide and lead to the construction of Table 1 (above), 

that is why they are not presented below. The sequence of 

problem (6) vectors of variables generated and analyzed by 

Algorithm 2 is shown below in Table. 2. Here F denotes the 

current value of the objective function, G denotes the current 

value of the left side of the inequality of problem (6), B is the 

right side of this inequality, and R is the maximum allowable 

value of the objective function. 

Table 2 

# x1 x2 x3 x4 F G Remarks 

1 1 1 1 1 18 17 G>B 

2 1 1 0 1 14 9 G<B, R=14 

3 1 0 1 1 16 13 G>B 

4 1 0 0 1 12 5 F<R 

5 0 1 1 1 11 15 F<R 

6 0 0 1 1 9 11 F<R 

The sequence of vectors of variables analyzed by Algorithm 2 

 

The result coincides with the previously found by Algorithm 1, 

but the difference lies in the fact that Algorithm 2 needed to 
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analyze only 6 plans for this, whereas Algorithm 1 needed to 

analyze 16 plans. The latter does not mean that the search 

time for a solution to problem (6) by Algorithm 2 is less than 

by Algorithm 1: as noted above, the duration of iterations of 

Algorithm 2 exceeds the duration of iterations of Algorithm 1. 

A detailed experimental analysis of the efficiency of the 

modular enumeration methods described above in relation to 

the knapsack problem is presented below in Section 4. 

 

IV. EXPERIMENTAL VERIFICATION OF MODULAR ENUMERATION 

EFFECTIVENESS 

During experiments was used computer with the following 

parameters: Processor Celeron N4100 /J4125; RAM 8 Gb.; 

hard disk 1 Tb; operating system Windows 10 – 64. The order 

of the experiments was determined by the following 

procedure: 

Algorithm 3 

Step 1. n = 3. 

Step 2. By the use of Monte Carlo method generated are all the 

integer coefficients and constants of problem (2) for a given 

number of Boolean variables n in the range 1 - 10. The other 

parameters: d = 1, goal functions are maximized – generated 

are knapsack problems with the number of variables in the 

range 3 – 20. 

Step 3. The problem obtained in the previous step is 

sequentially solved by software implementations of algorithms 

1 and 2 and brute force.  For each algorithm fixed are the 

running times T1(n), T2(n), T(n) and the gains in running time 

η1(n)= T(n)/T1(n), η2(n)= T(n)/T2(n). Steps 2, 3 are repeated 

10 times, after which the average values of the gain in time for 

each algorithm are recorded in the memory. 

Step 4. n = n + 1. 

Step 5. If n < 21, then go to step 2; otherwise, go to step 6.  

Step 6. The end of the algorithm.       

Experimental dependences of average values of the gain in 

running time in comparison with the traditional realization of 

enumeration method for each algorithm above - η1(n) (grey 

squares) for algorithm 1, η2(n) (black oblique crosses) for 

algorithm 2 and corresponding to (11) line η(n) (black 

triangles), are presented below in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

It is easy to verify that the experimental data behave themselves as 

predicted in Section 2: with an increase in the number of variables, 

the value of the gain in time for solving the knapsack problem by 

Algorithm 1 in comparison with brute force search approaches the 

value n. In addition, it has been experimentally confirmed that 

when solving problems with a relatively small number of 

variables, Algorithm 1 is more efficient than Algorithm 2; 

however, with an increase in the number of variables, the higher 

efficiency of the possibility of cutting off subsets of "bad" vectors 

of variables contained in Algorithm 2 becomes obvious. 

V.  CONCLUSIONS 

 

  In contrast to the methods of implicit enumeration, such as 

B&B, dynamic programming and backtracking, proposed 

above algorithm 1 to solving problems of type (2) allows a 

priori determination of:  

a) the computational time;  

b) the amount of used RAM;  

c) gain in computation time as compared to exhaustive search,   

regardless of the specific numerical values of the coefficients 

and constants of problem (2). The efficiency of this approach 

increases with the growth of this problem number of variables 

n and for sufficiently large n this dependence is close to the 

linear one, corresponding to (11). As for Algorithm 2, it has 

been experimentally shown that for sufficiently large values of 

n, its efficiency exceeds the efficiency of Algorithm 1, 

allowing one to use (11) as a lower bound of the gain in this 

algorithm's running time as compared with the brute force 

method.  

Further development of modular enumeration can be 

associated with the two directions: extension of this approach 

to the case of non-Boolean variables; development of such 

modular enumeration algorithms that allow adjusting the 

amount of used RAM. 

                              References  

[1] A.H. Land, A. G. Doig. An automatic method of solving 

discrete programming problems, Econometrica, Vol. 28, No. 

3, 1960, pp. 497-520.   

[2] C. A. Brown and P. W. Purdom Jr. An empirical comparison 

of backtracking algorithms. IEEE PAMI, 1982, pp. 309-315.   

[3] F. Rossi, P.V. Beek, T. Walsh, "Constraint Satisfaction: An 

Emerging Paradigm". Handbook of Constraint Programming. 

Foundations of Artificial Intelligence. Amsterdam: Elsevier. 

p. 14. ISBN 978-0-444-52726-4, 2006.                                     

[4] R. Bellman.  The Theory of Dynamic Programming. The 

RAND Corporation, 1954.  

[5] G. Desaulniers, J. Desrosiers, S. Spoorendonk. Cutting 

Planes for Branch-and-Price Algorithms. Published online 29 

October 2011 in Wiley Online Library 

(wileyonlinelibrary.com). © Wiley Periodicals Inc., 2011. 

[6] D. R. Morrison New methods for branch-and-bound 

algorithms. Dissertation submitted for the degree of Doctor 

of Philosophy in Computer Science in the Graduate College 

of the University of Illinois at Urbana-Champaign, 2014. 

[7] V. O. Groppen, and A.A. Berko Composite version of B&B 

algorithm: experimental verification of the efficiency. J. 

Phys.: Conf. Ser. 1278 012029, 2019, pp. 1-8. 

 https://iopscience.iop.org/issue/1742-6596/1278/1  

[8] V.O. Groppen. Composite Versions of Implicit Search 

Algorithms for Mobile Computing. Proceedings of the Future 

Technologies Conference (FTC) 2020, Volume 2, November 

5–6, 2020, pp. 336 – 348. 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

50

30

10

 

n 

η 

Fig. 1. Algorithms 1 and 2 analytic and experimental 

gains in running time. 

 

η2 

η1 

η 

INTERNATIONAL JOURNAL OF COMPUTERS 
DOI: 10.46300/9108.2021.15.23 Volume 15, 2021

E-ISSN: 1998-4308 159

https://books.google.com/books?id=Kjap9ZWcKOoC&pg=PA14
https://books.google.com/books?id=Kjap9ZWcKOoC&pg=PA14
https://books.google.com/books?id=Kjap9ZWcKOoC
http://www.elsevier.com/wps/find/bookdescription.cws_home/BS_FAI/description#description
https://en.wikipedia.org/wiki/Amsterdam
https://en.wikipedia.org/wiki/Elsevier
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-444-52726-4
https://iopscience.iop.org/issue/1742-6596/1278/1


 

 

[9] V.O. Groppen. Analysis of the Effectiveness of 

Composite Versions of Backtracking Algorithms. 
Conference proceedings, RusAutoConf 2020: Advances 

in Automation II, Springer, pp 235-244, 2021. 

[10] L. Caccetta, A. Kulanoot, Computational Aspects of Hard 

Knapsack Problems. Nonlinear Analysis, 47: 5547–5558. 

doi:10.1016/s0362-546x(01)00658-7, 2001.                                                                                                                      

Appendix 

Proof of Theorem 1. 

The running time T1 corresponding to the search by algorithm, 

satisfying condition (8), for a globally optimal solution to 

problem (1) is the sum of two times: T11 and T12: T1 = T11 + 

T12, where Т11 - time spent by algorithm 1 on steps 3 - 6, T12 - 

time spent by this algorithm on steps 7 - 11. Taking into 

account (8), we get (two numbers comparison time is ignored):  

                     Т11 = t0∙m ∙2n/m = t0∙n∙2n/m;                        (A.1)  

                      T12 = m∙2n∙t0,                                                                         (A.2) 

where t0 is the same, as used above in (7). 

We obtain a new, non-uniform distribution of variables 

between the modules, for which in the uniform distribution we 

remove one variable from the module k and transfer it to the 

module q. The search time for problem (1) solution by 

Algorithm 1 in this case is denoted as T2: T2 = t0∙ 

[ 2n/m + (  -1)∙2n/m-1 + (  +1)∙2n/m+1 + m∙2n]. (A.3) 

The difference T2 - T1 is designated bellow as ∆T: 

  ∆T= t0∙[ 2n/m + (  -1)∙2n/m-1 + (  +1)∙2n/m+1 + 

m∙2n - n∙2n/m - m∙2n]. 

After expanding the parentheses and transformations, we get: 

                        ∆T = 0.5 2n/m∙ t0∙[ ].                          (A.4) 

Since n and m are non-negative integers, ∆T is also non-

negative. It follows that T1 < T2. The theorem is proved. 

Proof of Theorem 2. 

Below are compared three search times for problem (1)  

globally optimal solution: T1 - brute force  time; T2 is the time 

spent on finding  globally optimal  solution to the same 

problem by Algorithm 1, provided that m = 2; T3 is the 

Algorithm 1 running time , provided that m  = 2+i, where i >0, 

integer. Keeping in mind, that in any case ratio n/m is integer 

and not less than 2, corresponding analytical expressions are 

presented below:  

                                           T1 = n∙2n∙t0;                                          

(A.5) 

                                           T2 = [n∙2n/2 + 2n+1]∙t0;                    (A.6) 

                                           T3 = [n∙2n/(2+i) + (2+i)∙2n]∙t0.    (A.7) 

The difference Ti - Tj is denoted below as ∆ij: 

                                   ∆12 = [n∙2n - n∙2n/2 - 2n+1]∙t0;                   (A.8) 

                 ∆32 = [n∙2n/(2+i) + 2n+1 + i∙2n - n∙2n/2 - 2n+1]∙t0.        (A.9) 

After conversions, (A.9) can be presented to the form:  

                 ∆32 = [n∙2n/(2+i) + i∙2n - n∙2n/2]∙t0.                                   (A.10) 

Taking into account that for all integer and even n it is true:          

                                       2n/2 ≥ n,                                     (A.11) 

it is easy to prove the inequality:  

                       n∙2n - n∙2n/2 - 2n+1 > n∙2n - 2n - 2n+1.          (A.12) 

But the right-hand side of (A.12) for the cases, when n> 4, is 

non-negative, resulting in ∆12 > 0 that is, T1>T2.           (A.13) 

Taking into account (A.11), true is the following inequality: 

           n∙2n/(2+i) + i∙2n - n∙2n/2 > n∙2n/(2+i) + i∙2n - 2n.         (A.14) 

But as “i” in (A.7) is integer and non-negative, the right-hand 

side of (A.14) is non-negative too:  

        n∙2n/(2+i) + i∙2n - 2n = n∙2n/(2+i) + (i – 1)∙2n - 2n > 0,   (A.15) 

thus resulting in ∆32 > 0 that is, T3>T2.                          (A.16) 

The simultaneous validity of inequalities (A.13) and (A.16) 

proves the validity of (1). Theorem 2 is proved. 
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